Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36234034

RESUMO

This article explores the concept of generating a porous anodic layer on the surface of a metallic component to host a phase change material (PCM) aiming to reduce the peak temperatures that the host structure will experience. The conditions to fabricate a porous anodic layer on top of an aluminum substrate were determined through varying anodization conditions: solution concentration, voltage employed, and anodization times. Pore sizes were characterized using scanning electron microscopy. The alkane n-eicosane was selected as PCM, introduced within the porous anodic annealed layer using vacuum impregnation and the thin film composite structure sealed. Epoxy resin and a metallic paste were tested as sealants. Thermal tests were performed to compare the behavior of aluminum alloy substrates anodized and sealed with and without PCM. The results showed pores with diameters in the 5-85 nm range, with average values that increased as the time of anodization was extended. The aluminum alloy impregnated with n-eicosane presents lowered surface peak temperatures during heating cycles than the samples that were only anodized or than the base alloy, demonstrating the potential of PCM incorporated in the superficial microstructure of anodic structures to manage, to a certain extent, peak transient thermal loads.

2.
Polymers (Basel) ; 14(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35267826

RESUMO

Carbon-based nanocomposites featuring enhanced electrical properties have seen increased adoption in applications involving electromagnetic interference shielding and electrostatic dissipation. As the commercialization of these materials grows, a thorough understanding of how thermal activation affects the rheology and electrical performance of CNT-epoxy blends can inform quality decisions throughout the production process. The aim of this work was the identification of the effects that thermal activation has on the electrical and rheological properties of uncured epoxy mixtures and how those may be tied to the resulting cured composites. Herein, three distinct CNT-loaded composite mixtures were characterized for changes in electrical resistivity and viscosity resulting from varying activation times. Electrical conductivity decreased as activation time increased. Uncured mixture viscosity exhibited a strong dependence on CNT loading and applied strain, with activation time being found to significantly reduce the viscosity of the uncured mixture and surface profile of cured composite films. In all cases, cured composites featured improved electrical conductivity over the uncured mixtures. Factors contributing to the observed behavior are discussed. Raman analysis, optical microscopy of CNT networks, and data from silica bead mixing and dispersion studies are presented to contextualize the results.

3.
Nanomaterials (Basel) ; 11(9)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34578484

RESUMO

Epoxy resins for adhesive and structural applications are widely employed by various industries. The introduction of high aspect ratio nanometric conductive fillers, i.e., carbon nanotubes, are well studied and are known to improve the electrical properties of the bulk material by orders of magnitude. This improved electrical conductivity has made carbon nanotube-based nanocomposites an attractive material for applications where their weight savings are at a premium. However, the analytical methods for validating carbon nanotube (CNT) nanofiller dispersion and for assuring that the properties they induce extend to the entire volume are destructive and inhibited by poor resolution between matrix and tube bundles. Herein, rare-earth oxide nanoparticles are synthesized on CNT walls for the purpose of increasing the contrast between their network and the surrounding matrix when studied by imaging techniques, alleviating these issues. The adherence of the synthesized nanoparticles to the CNT walls is documented via transmission electron microscopy. The crystalline phases generated during the various fabrication steps are determined using X-ray diffraction. Deep ultraviolet-induced fluorescence of the Eu:Y2O3-CNT nanostructures is verified. The impacts to nanocomposite electrical properties resulting from dopant introduction are characterized. The scanning electron microscopy imaging of CNT pulp and nanocomposites fabricated from untreated CNTs and Eu:Y2O3-CNTs are compared, resulting in improved contrast and detection of CNT bundles. The micro-CT scans of composites with similar results are presented for discussion.

4.
Materials (Basel) ; 13(21)2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33172061

RESUMO

A simple, low temperature, method, hydrogen-enhanced atomic transport (HEAT), for creating metallic-bonded brown bodies of order 40% bulk density in molds of designed shape from Ti metal particles is introduced. In this initial study 40 micron titanium particles were poured into graphite molds, then heated to temperatures equal to or greater than 650 °C for four hours in a flowing ambient pressure gas mixture containing some hydrogen led to brown body formation that closely mimicked the mold shape. The brown bodies were shown to be dense, metallic bonded, and consisted of primarily Ti metal, but also some TiH. It is postulated that hydrogen is key to the sintering mechanism: it enables the formation of short-lived TiHx species, volatile at the temperatures employed, that lead to sintering via an Ostwald Ripening mechanism. Data consistent with this postulate include findings that brown bodies are formed with hydrogen present (HEAT process) had mechanical robustness and only suffered plastic deformation at high pressure (ca. 5000 Atm). In contrast, brown bodies made in identical conditions, except the flowing gas did not contain hydrogen, were brittle, and broke into micron scale particles under much lower pressure. HEAT appears to have advantages relative to existing titanium metal part manufacturing methods such as powder injection molding that require many more steps, particularly debinding, and other methods, such as laser sintering, that are slower, require very expensive hardware and expert operation.

5.
Materials (Basel) ; 13(21)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33114213

RESUMO

In this study, carbon nanotube (CNT) epoxy composite films were fabricated, characterized, and tested as resonant, plasmonic metamaterials. CNT-epoxy formulations, containing diverse CNT loadings, were fabricated and templates were used to generate repeating arrays of squares of diverse dimensions. Their absorption characteristics were characterized by collecting free space reflectivity data in the microwave band, using an arch setup in an anechoic chamber. Data were collected from 2 to 20 GHz. The materials behavior was modeled using a standard unit-cell-based finite element model, and the experimental and calculated data were compared. The experimental results were successfully reproduced with appropriate adjustments to relative permittivity of the composite films. This research demonstrates the ability to use CNT-based conductive composites for manufacturing metamaterials, offering a potentially lighter-weight alternative in place of traditional metal films. Lower conductivity than other conductors causes a widening of the absorption curves, providing a wider band of frequency absorption.

6.
Polymers (Basel) ; 12(4)2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32290115

RESUMO

Carbon nanotube (CNT) conductive composites have attracted significant attention for their potential use in applications such as electrostatic dissipation and/or electromagnetic interference shielding. The focus of this work is to evaluate resistivity trends of extremely low loading (<0.1 wt%) epoxy-CNT composites that lack a connected CNT network, but still present electrical conductivity values appropriate for those uses. The impact of current, temperature, and cycle life on electrical properties are here identified and tied to possible performance limits. At extremely low loadings, the CNT content is not sufficient to form a completely interconnected grid, thus, electrons must travel through insulating media. While still in the semi-conductor range, resistivity values are observed to decrease with increasing direct current and demonstrate a non-ohmic behavior. CNT epoxy composites were subjected to elevated currents and/or temperatures over diverse periods of time to examine impacts on resistivity. Microstructural analyses of composite samples were conducted to observe signs of damage for specimens taken to extreme temperatures/currents. An understanding of the electrical conductivity characteristics of extremely low loading epoxy-CNT composites and their failure mechanisms will aid in understanding risks associated with their use in challenging environments that may include high temperatures, high currents, and/or high frequencies.

7.
Materials (Basel) ; 13(3)2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32023972

RESUMO

This manuscript integrates the experimental findings of recently developed epoxy-phase change material (PCM) formulations with modeling efforts aimed to determine the energy demands and savings derived from their use. The basic PCM system employed was composed of an epoxy resin, a thickening agent, and nonadecane, where the latter was the hydrocarbon undergoing the phase transformation. Carbon nanofibers (CNF) and boron nitride (BN) particulates were used as heat flow enhancers. The thermal conductivities, densities, and latent heat determined in laboratory settings were introduced in a model that calculated, using EnergyPlus software, the energy demands, savings and temperature profiles of the interior and the walls of a shelter for six different locations on Earth. A shipping container was utilized as exemplary dwelling. Results indicated that all the epoxy-PCM formulations had a positive impact on the total energy savings (between 16% and 23%) for the locations selected. The use of CNF and BN showed an increase in performance when compared with the formulation with no thermal filler additives. The formulations selected showed great potential to reduce the energy demands, increase savings, and result in more adequate temperatures for living and storage spaces applications.

8.
Materials (Basel) ; 12(18)2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31500207

RESUMO

Described herein is a novel method, Reduction Expansion Synthesis-Sintered Metal (RES-SM), to create a sintered metal body of a designed shape at ambient pressure, hundreds of degrees below the metal melting temperature. The precursor to the metal part is a mixture of metal oxide particles and activated metal particles, and in this study specifically nickel oxide and activated nickel metal particles. It is postulated that the metal oxide component is reduced via exposure to chemical radical species produced via thermal decomposition of urea or other organic compounds. In the study performed, the highest temperature required was 950 °C, the longest duration of high temperature treatment was 1200 s, and in all cases, the atmosphere was inert gas at ambient pressure. As discovered using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and x-ray diffraction (XRD), the metal that forms via the RES process presents necks of completely reduced metal between existing metal particles. The 'as produced' parts are similar in properties to 'brown' metal parts created using more standard methods and require 'post processing' to full densify. Parts treated by hot isostatic pressing show fully self-supporting, robust structures, with hardness values like others reported in literature for traditional fabrication methods. This novel method uses affordable and environmentally friendly precursors to join metallic parts at moderate temperatures, produces fully reduced metals in a very short time and has potential to make many parts simultaneously in a standard laboratory furnace.

9.
Molecules ; 24(10)2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31100841

RESUMO

The need for affordable systems that are capable of regulating the temperature of living or storage spaces has increased the interest in exploring phase change materials (PCMs) for latent heat thermal energy storage (LHTES). This study investigates n-nonadecane (C19H40) and n-eicosane (C20H42) as alkane hydrocarbons/paraffins for LHTES applications. An epoxy resin is used as the support matrix medium to mitigate paraffin leakage, and a thickening agent is utilized to suppress phase separation during the curing process. In order to enhance the thermal conductivity of the epoxy-paraffin composite, conductive agents including carbon nanofibers (CNFs), carbon nanotubes (CNTs), boron nitride (BN) microparticles, or boron nitride nanotubes (BNNTs) are incorporated in different gravimetric ratios. Enhancements in latent heat, thermal conductivity, and heat transfer are realized with the addition of the thermal fillers. The sample composition with 10 wt.% BN shows excellent reversibility upon extended heating-cooling cycles and adequate viscosity for template casting as well as direct three-dimensional (3D) printing on fabrics, demonstrating the feasibility for facile integration onto liners/containers for thermal regulation purposes.


Assuntos
Compostos de Boro/química , Carbono/química , Resinas Epóxi/química , Temperatura Alta , Nanocompostos/química , Nanocompostos/ultraestrutura , Análise Espectral , Termodinâmica
10.
Nanomaterials (Basel) ; 9(4)2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30934937

RESUMO

It is well established that dramatic increases in conductivity occur upon the addition of conductive filler materials to highly resistive polymeric matrices in experimental settings. However, the mechanisms responsible for the observed behavior at low filler loadings, below theoretical percolation limits, of even high aspect ratio fillers such as carbon nanotubes (CNT) are not completely understood. In this study, conductive composites were fabricated using CNT bundles dispersed in epoxy resins at diverse loadings, using different dispersion and curing protocols. Based on electron microscopy observation of the CNTs strands distribution in the polymeric matrices and the corresponding electrical conductivities of those specimens, we concluded that no single electron transfer model can accurately explain the conductive behavior for all the loading values. We propose the existence of two different conductive mechanisms; one that exists close to the percolation limit, from 'low loadings' to higher CNT contents (CNT % wt > 0.1) and a second for 'extremely low loadings', near the percolation threshold (CNT % wt < 0.1). The high conductivity observed for composites at low CNT loading values can be explained by the existence of a percolative CNT network that coexists with micron size regions of non-conductive material. In contrast, samples with extremely low CNT loading values, which present no connectivity or close proximity between CNT bundles, show an electrical conductivity characterized by a current/voltage dependence. Data suggests that at these loadings, conduction may occur via a material breakdown mechanism, similar to dielectric breakdown in a capacitor. The lessons learned from the data gathered in here could guide future experimental research aimed to control the conductivity of CNT composites.

11.
Materials (Basel) ; 11(1)2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29303977

RESUMO

This work demonstrates that a version of the Reduction Expansion Synthesis (RES) process, Cr-RES, can create a micron scale Cr coating on an iron wire. The process involves three steps. I. A paste consisting of a physical mix of urea, chrome nitrate or chrome oxide, and water is prepared. II. An iron wire is coated by dipping. III. The coated, and dried, wire is heated to ~800 °C for 10 min in a tube furnace under a slow flow of nitrogen gas. The processed wires were then polished and characterized, primarily with scanning electron microscopy (SEM). SEM indicates the chrome layer is uneven, but only on the scale of a fraction of a micron. The evidence of porosity is ambiguous. Elemental mapping using SEM electron microprobe that confirmed the process led to the formation of a chrome metal layer, with no evidence of alloy formation. Additionally, it was found that thickness of the final Cr layer correlated with the thickness of the precursor layer that was applied prior to the heating step. Potentially, this technique could replace electrolytic processing, a process that generates carcinogenic hexavalent chrome, but further study and development is needed.

12.
Materials (Basel) ; 11(2)2018 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-29373538

RESUMO

This research aimed to evaluate the thermal properties of new formulations of phase change materials (PCMs)-epoxy composites, containing a thickening agent and a thermally conductive phase. The composite specimens produced consisted of composites fabricated using (a) inorganic PCMs (hydrated salts), epoxy resins and aluminum particulates or (b) organic PCM (paraffin), epoxy resins, and copper particles. Differential Scanning Calorimetry (DSC) was used to analyze the thermal behavior of the samples, while hardness measurements were used to determine changes in mechanical properties at diverse PCM and conductive phase loading values. The results indicate that the epoxy matrix can act as a container for the PCM phase without hindering the heat-absorbing behavior of the PCMs employed. Organic PCMs presented reversible phase transformations over multiple cycles, an advantage that was lacking in their inorganic counterparts. The enthalpy of the organic PCM-epoxy specimens increased linearly with the PCM content in the matrix. The use of thickening agents prevented phase segregation issues and allowed the fabrication of specimens containing up to 40% PCM, a loading significantly higher than others reported. The conductive phase seemed to improve the heat transfer and the mechanical properties of the composites when present in low percentages (<10 wt %); however, given its mass, the enthalpy detected in the composites was reduced as their loading further increased. The conductive phase combination (PCM + epoxy resin + hardener + thickening agent) presents great potential as a heat-absorbing material at the temperatures employed.

13.
Materials (Basel) ; 8(10): 7048-7058, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-28793618

RESUMO

Graphene sheets doped with nitrogen were produced by the reduction-expansion (RES) method utilizing graphite oxide (GO) and urea as precursor materials. The simultaneous graphene generation and nitrogen insertion reactions are based on the fact that urea decomposes upon heating to release reducing gases. The volatile byproducts perform two primary functions: (i) promoting the reduction of the GO and (ii) providing the nitrogen to be inserted in situ as the graphene structure is created. Samples with diverse urea/GO mass ratios were treated at 800 °C in inert atmosphere to generate graphene with diverse microstructural characteristics and levels of nitrogen doping. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to study the microstructural features of the products. The effects of doping on the samples structure and surface area were studied by X-ray diffraction (XRD), Raman Spectroscopy, and Brunauer Emmet Teller (BET). The GO and urea decomposition-reduction process as well as nitrogen-doped graphene stability were studied by thermogravimetric analysis (TGA) coupled with mass spectroscopy (MS) analysis of the evolved gases. Results show that the proposed method offers a high level of control over the amount of nitrogen inserted in the graphene and may be used alternatively to control its surface area. To demonstrate the practical relevance of these findings, as-produced samples were used as electrodes in supercapacitor and battery devices and compared with conventional, thermally exfoliated graphene.

14.
Materials (Basel) ; 7(5): 3699-3714, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-28788644

RESUMO

Samples of carbon nano-fiber foam (CFF), essentially a 3D solid mat of intertwined nanofibers of pure carbon, were grown using the Constrained Formation of Fibrous Nanostructures (CoFFiN) process in a steel mold at 550 °C from a palladium particle catalysts exposed to fuel rich mixtures of ethylene and oxygen. The resulting material was studied using Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDX), Surface area analysis (BET), and Thermogravimetric Analysis (TGA). Transient and dynamic mechanical tests clearly demonstrated that the material is viscoelastic. Concomitant mechanical and electrical testing of samples revealed the material to have electrical properties appropriate for application as the sensing element of a strain gauge. The sample resistance versus strain values stabilize after a few compression cycles to show a perfectly linear relationship. Study of microstructure, mechanical and electrical properties of the low density samples confirm the uniqueness of the material: It is formed entirely of independent fibers of diverse diameters that interlock forming a tridimensional body that can be grown into different shapes and sizes at moderate temperatures. It regains its shape after loads are removed, is light weight, presents viscoelastic behavior, thermal stability up to 550 °C, hydrophobicity, and is electrically conductive.

15.
Materials (Basel) ; 7(6): 4182-4195, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-28788671

RESUMO

Carbon nanofilament and nanotubes (CNTs) have shown promise for enhancing the mechanical properties of fiber-reinforced composites (FRPs) and imparting multi-functionalities to them. While direct mixing of carbon nanofilaments with the polymer matrix in FRPs has several drawbacks, a high volume of uniform nanofilaments can be directly grown on fiber surfaces prior to composite fabrication. This study demonstrates the ability to create carbon nanofilaments on the surface of carbon fibers employing a synthesis method, graphitic structures by design (GSD), in which carbon structures are grown from fuel mixtures using nickel particles as the catalyst. The synthesis technique is proven feasible to grow nanofilament structures-from ethylene mixtures at 550 °C-on commercial polyacrylonitrile (PAN)-based carbon fibers. Raman spectroscopy and electron microscopy were employed to characterize the surface-grown carbon species. For comparison purposes, a catalytic chemical vapor deposition (CCVD) technique was also utilized to grow multiwall CNTs (MWCNTs) on carbon fiber yarns. The mechanical characterization showed that composites using the GSD-grown carbon nanofilaments outperform those using the CCVD-grown CNTs in terms of stiffness and tensile strength. The results suggest that further optimization of the GSD growth time, patterning and thermal shield coating of the carbon fibers is required to fully materialize the potential benefits of the GSD technique.

16.
Langmuir ; 23(13): 7055-64, 2007 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-17500574

RESUMO

Ceria-alumina particles of a wide variety of structures, from micrometer-sized hollow spheres to nanoparticles, were produced from aerosols of different natures, but all derived from nitrate salts passed through a low power (<1000 W) atmospheric pressure plasma torch. The amount of water present with the nitrate salts was found to significantly affect the morphology of the resulting material. A model was proposed that explains the mechanism in which water acts as a blowing agent to create hollow metal oxide spheres that then shatter to form metal oxide nanoparticles. Further examination of the nanoparticles revealed that they display a core/shell morphology in which the core material is crystalline CeO2 and the shell material is amorphous Al2O3. These unique core/shell materials are interesting candidates for catalyst support materials with high thermal durability. In addition, experiments have shown that the nanoparticles can be readily converted into CeAlO3 perovskite.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...